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Abstract.  A new mesh-free DSD front tracker that explicitly solves the detonation front 
propagation is implemented for an arbitrarily specified HE boundary. Compared to 
previously existing mesh-based DSD implementations, the new method is advantages 
with reduced cost, improved accuracy, minimized data space, and enhanced capabilities.  
The new DSD front tracker puts marked particles on the HE front and tracks the motion 
of the particles in the front normal direction, governed by a time dependent ODE system. 
The difficulty associated with an implicit DSD boundary treatment is much reduced by an 
explicit methodology for arbitrarily specified HE boundary geometry. The issue 
associated with the change of front topology is resolved with an efficient local inclusion 
test. Particles are redistributed on the front to maintain the desired resolution. This DSD 
front tracker has been validated with comparisons to exact and reactive flow solutions of 
rate-stick problems.     

 

 

Introduction 

Programmed HE burn with a detonation shock 
dynamics (DSD) model is an efficient method for 
the lighting time calculation compared to reactive 
flow modeling which requires high resolution for 
the reaction zone. Existing DSD implementations 
solve for the level-set PDE (or some equivalent 
PDE) with a mesh and apply an angle condition on 
the HE/inert boundary. Among the existing DSD 
algorithms, a finite-difference method can be 
easily performed on a Cartesian mesh. However, 
the boundary treatment becomes complicated 

because both the detonation front and the HE 
boundary are implicitly defined [1],[2]. With a 
renormalization of the distance field, a narrowband 
methodology can reduce the cost, but would not 
converge to the true solution with even a relatively 
trivial concave geometry [3]. Another method using 
a least-squared fitting of the lighting front utilizing 
an existing hydro mesh is also implemented in a 
narrowband fashion but the boundary condition is 
still difficult to apply even when the HE boundary 
is explicitly specified with a body-fitting mesh [4]. 
Because mesh resolution cannot be adjusted, local 
high curvature regions cannot be resolved with a 



mesh-based DSD method. In addition, a mesh-
based method requires relatively big storage space.  

To reduce the above difficulties, a DSD algorithm 
with both the detonation front and the HE 
boundary explicitly expressed is desirable. Such a 
method may provide an easier boundary treatment, 
an adjustable local resolution for a more accurate 
and efficient solution, with a smaller data space. 

Recently, we have implemented a mesh-free DSD 
front tracker that admits an arbitrarily specified HE 
boundary. The new algorithm tracks particles 
distributed on the lighting front according to a 
given DSD curvature law, with a curved fitting of 
neighbor particle positions. The DSD boundary 
angle condition is used to explicitly derive the 
position of a boundary particle. The challenge with 
topology change is treated by employing an 
efficient geometrical inclusion method, and 
utilizing a uniform virtual background Cartesian 
grid. The necessity with redistribution of particles 
is performed by a relaxation method based on 
distance (or curvature) for maintaining accuracy. 

With this new algorithm there is no need to solve 
the governing nonlinear PDE as with the previous 
implemented DSD methods. Instead, a set of time-
dependent ODEs derived from the DSD evolution 
equation [5] is used to advance a detonation front.  
This PDE to ODE conversion is third order 
accurate in space and introduces no error in time.  

In this article, we will describe the mathematical 
aspects and numerical techniques for front motion, 
topology change, boundary treatment, and surface 
management associated with this mesh-less DSD 
front tracker. Some 2D numerical examples that 
verify and validate the new method then follow.   

HE Boundary Presentation: with Fixed Control 
Points that Define Boundary Faces 

In practice, boundary geometry usually can be 
specified with a set of control points and a rule to 
connect them to represent boundary faces. For 
example, the rate-stick geometry can be defined 
with four points. To define a boundary in two-
dimensions, the control points can be ordered 
counter-clock-wise with two consecutive points 
defining a face. A face can be planar or curved 
depending on if continuity of slope at a control 
point is in consideration. In an axi-symmetrical 
geometry, the “faces” are the faces in two-
dimensions revolved around the axis. Rather 
complicated boundary geometry can possibly be 
defined with a small set of control points (this can 
be seen with numerical examples later in this 
article). The smallness of boundary data is usually 
also true in three-dimensions. 

Burn Front Representation: with Particles and a 
(Distance-based) Neighbor Relationship 

A detonation front at a time step is presented by 
particles distributed on the front (fig. 1).  To 
completely describe a given detonation front, it is 
sufficient to assign for each particle a set of 
neighbor particles. The local geometry of a front is 
described by the positions of neighbor particles. 

We select the neighbors with distances between 
particles by specifying a search-length s which can 
be the desired resolution in the problem. At any 
time step, a particle looks for its neighbors within 
the distance s. At the next time-step, some 
neighbor particles may move into or out of the 
neighborhood of a given particle. This change can 
be traced locally by the neighbor relationship. 



Each particle is assigned a unit normal vector as 
their direction of motion. A natural treatment is to 
fit a plane (in 3D) or a line (in 2D) with particles 
in the neighborhood and so this is our choice. The 
direction of the normal vector is determined by 
specifying the orientation of the particles in the 
neighborhood. In 2D a particle carries a left and a 
right neighbor to define the orientation. In 3D, the 
neighbors are ordered counter-clock-wise in the 
fitting plane with particles projected on the plane.    

      

Fig.1. Particle presentation of a local detonation 
front in 3D is shown. Vectors are in the normal 
direction of propagation of the detonation. 

Front Motion: with a PDE to ODE Conversion of 
the Equation of Motion of a Detonation  

A given particle P on a detonation front move in 
the normal direction with a velocity Dn computed 
from a given Dn-κ relation (subscript n for normal). 
The front curvature κ is obtained from fitting a 
curved surface to neighbor particles in the surface 
normal coordinate defined for P (fig. 2).  

To the leading order approximation of the DSD 
theory, Dn, the detonation front velocity in the 
normal direction, is a function of front curvature κ, 
i.e. Dn = Dn(κ). The motion of the front is 
described by a partial differential equation  
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Fig.2. The local front normal coordinate for a 
given particle P. The front geometry is defined 
with a quadratic fitting with neighbor particles 
(filled circles within distance s) of P. Unfilled 
circles mark particles that are not neighbors of P.  

Here the surface 0),( =trϕ  defines the position 
of the front in space and time. We do not solve the 
level-sets; merely we track the position of the front.  

The normal vector at a particle P on a given front 
0),( =trϕ  is defined by ||ˆ ϕϕ ∇∇=


n . In three-

dimensions, a local Cartesian-coordinate system  
)ˆ,ˆ,ˆ( ηξn can be defined by setting the origin at P 

with the normal at it being the n-axis; ξ-axis and 
η-axis are the principal tangential unit vectors. In 
this intrinsic normal coordinate, the front geometry 
can be generally expressed by n = h(ξ, η) in a 
neighborhood of P. We assume here the surface 
that represents a detonation front is sufficiently 
smooth to well define curvature. Such a surface 
may take the form of a Taylor expansion with a 
third order spatial accuracy in the format       
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Where the coefficients a, b, c, e, f, and g are 
considered functions of time that carry the change 
of geometry of the detonation front. 

A reduced form with the front expansion eq. (2) in 
the surface normal coordinate can be derived. Let 
us consider the moment t = T0, without loss of 
generality T0 can be set to 0. Because the front 
passes the origin, one must have f (0) = 0.  

We compute the normal vector at the origin with 
our choice of ϕ = n – h(ξ, η) using eq. (2). This 
normal by definition is proportional to the vector

.ˆ)(ˆ)(ˆ ηξ ηξηξϕ eecbedban ++−++−=∇


At the origin (0, 0, 0), the normal must only have 
the n-component therefore, therefore we also have 
d(0) = 0 and e(0) = 0. We set b(0) = 0 for )ˆ,ˆ( ηξ ee
are the directions with the principal curvatures.  
The local geometry has symmetry about the n-axis. 

To track the motion of the particle initially at the 
origin, we substitute ϕ = n – h(ξ, η) into the 
equation of motion eq. (1), then take arbitrarily 
small ξ and η, and expand the equation to third 
order, with some algebraic manipulations. The 
equation of motion is reduced to a set of ODEs 
that ).(),(),( 22 κκκ nnn DfDccDaa ===   

The motion of a particle P is governed by the 
above ODEs. The local front geometry will be 
symmetric above n-axis to third order without 
introducing error in time. For each marked particle 
P on the detonation front, a corresponding local 
surface normal coordinate can be defined as above.  

The curvature κ at a particle is then – (a + c). The 
quadratic front fitting to the positions of neighbor 
particles is performed at the start of each time step. 
An ODE integrator can be used to update the 
position of a particle at the end of this time-step 
with a high accuracy in time.  

Particles maybe added / deleted / rearranged on the 
front for an ideal spatial distribution for the next 
step. The procedure described is iterated until the 
entire HE region is lit. 

Linear Stability and the Size of Time-steps 

For a near CJ diverging detonation wave, the 
curvature is positive and the detonation speed is 
below its CJ value. In this case, a linear stability 
analysis of the ODE system shows negative 
growth factors. The time integration is then stable. 
For a converging detonation, we take the CJ 
velocity to propagate the detonation and there is no 
uncontrolled growth introduced with this choice.  
Rearranging particles tends to smooth the front 
and this would also help to stabilize this numerical 
scheme. However, the time step should be limited 
in order to avoid unnecessary reordering of 
neighbor particles. For the purpose of testing we 
have taken constant time steps. 

Treatment of Topology Change: with an 
Inclusion Test Utilizing a Cartesian Virtual Grid 

The information about if a marked particle has 
moved out of the boundary, or into burned region 
has to be provided by an inclusion test. Directly 
applying conventional inclusion tests for the case 
of many points is inefficient. We have 
implemented an inclusion test based on locality to 
improve the efficiency. 



We use a special length lc as the unit of length to 
scale the problem. After dividing coordinates by lc, 
each particle is contained in a unit cube (i, i+1; j, 
j+1; k, k+1) with (i, j, k) being the integer floor 
values of the coordinates of the particle position.  

Those virtual-cubes that contain the HE boundary 
are identified by finding the intersections of the 
unit cubes and the boundary (fig. 3). We have 
implemented a directional-walking intersection 
algorithm [6] for boundaries consists of planar or 
Hermite cubic spline faces.  We perform a local 
quadratic fit to a detonation front to compute its 
intersection with unit cubes. When a particle is 
located in a cube that is sliced by either the HE 
boundary or the detonation front, we check its 
relative position to the boundary (or front) with a 
local inclusion test inside this unit cube only. This 
approach makes the inclusion test very efficient. 

           

Fig. 3. Utilizing background virtual cubes, only 
the particles contained in the boundary cubes need 
to be test for inclusion with the boundary faces 
crossing a cube that contains a given particle. 
Each virtual cube is a unit one after scaling by lc. 

The size of a virtual cube lc should be a fraction of 
the volume of the HE region divided by its surface 
area. Then only those particles contained in the  
boundary cubes (the cubes crossed by boundary) 
need to be tested for inclusion with only the 
boundary faces that cross a given cube. These 
virtual cubes maybe used later for a linear 
neighbor search for an interpolation of lighting 
times carried by particles that define the 
detonation fronts (lighting time contours). In 
general lc is much bigger than the mesh resolution 
required. Because only those virtual cubes crossed 
by boundary and front need to be stored at a time, 
the data storage for the virtual cubes is very small.   

Boundary Treatment: Explicitly Apply the DSD 
Boundary Angle Condition  

A detonation front is presented by particles 
distributed on the front. The front curvature is 
obtained from fitting a curved surface to neighbor 
particles. For a boundary particle, this fitting is 
constrained by a material specific angle between 
the detonation front and the HE boundary. For a 
boundary particle in two-dimensions, its two 
nearest inner neighbor particles are employed to fit 
a circle that intersects the boundary with the angle 
ωc. The boundary particle is put at the intersection 
(fig. 4). In three-dimensions, the idea is similar: fit 
for each boundary particle a quadratic surface to 
the updated positions of its interior neighbors, with 
an angle constraint applied at the intersection of 
the front and the boundary. The associated algebra 
is not hard to perform for planar boundary 
geometry.  For a curved boundary the solution is a 
bit harder to handle, but a local planar fitting of the 
boundary can be done for an approximate solution. 
A finer solution would require iterations. 



            

Fig. 4. A circle that passes interior neighbors A, B 
and intersects the boundary with the DSD angle ωc 
is constructed to locate boundary particle C. 

In three-dimensions, the boundary condition is to 
be applied in a plane that is perpendicular to the 
boundary.  The intersection of the quadratic fitting 
of the front and this plane needs to be computed 
for applying the DSD boundary angle in this plane. 
Nevertheless, it becomes a two-dimension problem. 

Front Management: with Adding, Deleting and 
Relaxing/Rearranging the Particles 

As a principle we drop particles that move out of 
boundary or into burned regions. Currently we 
choose to control the resolution with a length α as 
the desired size of a face. In two-dimensions this 
can be simply done by keeping the number of 
particles on a piece of front of an arc-length L 
being the integer portion of  L divided by α, and 
then evenly place the particles. The criterion for 
placing the particles can also be performed by a 
relaxation rule based on curvature such as κα = 
const where α  is the dimension of a face of the 
front. A curvature based distribution of particles 
allows a variable resolution and improves accuracy 
for regions with higher curvature. Relaxation 
based on distance or curvature can be done in 3D. 

Local insertion of particles for maintaining the 
distance between nearest particles can always be 
performed for a given particle and its neighbors to 
control the front resolution. The associated search 
of nearest particles with a search-length is local 
with the known neighbor information. 

         

Fig. 5. Particles out of boundary or into lit regions 
(identified with the inclusion test) after a time 
advancement, are to be dropped.   

Neighbor Search and Change of Topology 

As described previously, a given particle carries a 
set of neighbor particles and the search of 
neighbors is based on a search length that reflects 
the local resolution desired. When multiple 
detonations impact, because only a first order 
accuracy is expected where some particle(s) run 
into regions that are burned, there is no need to 
calculate the intersection of two fronts. One 
merely keeps using a quadratic fit to the updated 
neighbors for front geometry for topology change. 

A Small Data Space:  with a Reduced Complexity  

In practice, only an ignorable storage is needed for 
specifying the boundary geometry. Furthermore, at 
any time step the information needed to advance 
the front is carried by only the positions of 
particles on the current front. A front processed by 



the new DSD tracker is a (k–1)-dimensional 
profile embedded in k-dimensional space (k = 2, 3). 
The spatial complexity for a mesh-based DSD 
method is reduced by a dimension. The proposed 
method has third-order accuracy in space, thus a 
high resolution is not required unless a local high 
front curvature needs to be resolved. For a given 
accuracy, an optimized number of particles can be 
distributed to describe the front. Those virtual-
cubes that are crossed by the boundary and the 
front at a time step need to be carried. However, 
the corresponding storage is also rather small. 

Since the spatial complexity is reduced with our 
mesh-free methodology, a minimal data space is 
required (to store only the boundary geometry, the 
current particle positions, and the virtual cubes) to 
advance the detonation front. Effort toward 
parallelization is possibly unnecessary for even a 
rather big-sized DSD problem. This might be one 
of the major advantages associated with a mesh-
less DSD implementation. Because the proposed 
scheme depends solely on neighbor relationship, a 
parallelization is not hard to perform if necessary. 

Supply Lighting Times: with Local Interpolations  

The marked particles distributed on each of the 
fronts (time contours), provides a table of lighting 
times. In a hydro simulation, a lighting time is 
assigned at each HE node (or zone-center) from 
the data carried by the marked particles. This is 
achieved by utilizing the virtual cubes for the 
inclusion test. For a virtual cube that contains a 
given node N, one collects a list of marked 
particles that are also contained in this cube (fig. 6). 
The detonation arrival time and particle coordinate 
for each particle in the list are used to construct a 

local lighting-time field with a quadratic least 
squared fit.  Then the lighting time at the node N is 
obtained. The neighbor search with this operation 
costs linearly for each virtual cube carrying a list 
of positions and lighting-times at particles. An 
example with this interpolation for a PBX-9502 
HE lighting problem is shown in fig 7.  

              

Fig.6. The lighting time at a solid dot is the 
interpolation of the values at the particles  
(circles) on time contours (dashed curves). Virtual 
cubes for inclusion also help the neighbor search. 

        

Fig. 7.  The moving particle solution for a PBX-
9502 circular channel detonation is converted into 
lighting times on a mesh with local interpolation. 
The DSD boundary angle is taken to π /3. 



Numerical Examples: with Arbitrary Boundaries 

Example A: with a Curved Geometry 

As show in (fig. 8) the boundary of the HE region 
has a shape of a star-fish. With a mesh based DSD 
calculation, there would be many nodes to present 
the boundary. Here we only employed ten control 
points. A boundary face is a piece of a Hermite 
cubic-spline curve that ensures smoothness of the 
boundary (this is a common practice). 

The Dn-κ relation is taken to Dn = 1 – 0.2κ, and the 
DSD boundary angle is set to π /3. The lighting 
starts with 30 particles evenly put on a flat 
detonation front. The front successfully turns the 
corners and expands into the center. Particles are 
redistributed for keeping the initial resolution. 
When the front hits the boundary again, some 
particles become exterior and are dropped. This 
procedure repeats itself until all the fronts become 
smaller than a preset threshold.  

        

Fig. 8. Detonation fronts (lighting time contours) 
obtained with the particle DSD front tracker. With 
Dn = 1 – 0.2κ, and a boundary angle ωc = π /3. 

Example B: with a Zigzag HE Channel 

The HE region has a boundary consists of planar 
faces in (fig. 9). Twelve control-points are used to 
define this zigzag geometry. The same DSD 
parameters used in the last example are employed 
with a flat initial detonation front starts from the 
foot. The front successfully made turns around 
corners and kept intersecting the boundary at a 60 
degree angle. This geometry is somehow more 
difficult to apply the boundary condition, for the 
boundary is not everywhere differentiable. 

             

Fig. 9. The propagation of detonation in a zigzag 
channel is simulated with the mesh-less DSD front 
tracker, with the same DSD parameters. 

Validation of the Mesh-less DSD Tracker 

We have verified the scheme with rate-stick 
geometry first with the exact solution for a linear 
Dn-κ relation. Let the width of the stick be 2R, 
taking DCJ as the velocity unit (then Dn = 1 – α κ), 
R as the length unit to scale the system, and ωc = 
π/4, the system has a first integral in planar 
geometry
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Where the term T = (1 – C2)1/2, with C the steady 
travelling velocity. For α = 0.1, we get C = 
0.969723, which is accurately recovered to 6 digits 
with this mesh-less detonation front tracker. 

We also compared the numerical results obtained 
from this tracker with reactive flow simulation 
(CHEETAH) for rate stick problems with LX-17. 
We numerically derive the front velocity and 
curvature relation with CHEETAH data. Then we 
input the numerical Dn-κ relation and run the DSD 
front tracker, and obtained an almost exact match 
between the two. We consider it a justification to 
both the parameters we obtained from the LX-17 
DSD study and this mesh-free front tracker.    

The Numerical Dn-κ Relationship for LX-17 

We employ a CHEETAH generated steady LX-17 
detonation in rate-stick geometry represented by 
data-points on the front. We evenly divide the 
radius to intervals. At each joint of intervals, a 
search-distance D is used to look for data-points 
contained in the sphere centered at the joint with 
radius D. The selected data-points are used to fit a 
quadratic to obtain the curvature at each joint. The 
slope of the fitting curve provides information of 
normal front velocity at a joint. Then we obtain a 
(Dn, k) pair at each joint and a point on the Dn-κ 
curve for LX-17 rate-stick is obtained The small 
curvature extrapolation gives DCJ ~ 7.73 (cm/ms) 
which is in agreement with experimental results [9]. 

Comparison with CHEETAH Rate-stick Fronts 

We have run our mesh-less DSD front checker 
with the numerical Dn-κ relation derived for LX-
17, and a boundary angle of 0.4472π. The tracker 
generated a front visually overlaps the CHEETAH 

front. This shows that the DSD programmed-burn 
can adequately predict the detonation arriving time. 

            

Fig.10. A steady detonation front in a 50mm rate-
stick test generated with the mesh-less DSD 
tracker (dashed curve, using our numerical Dn-κ 
derived for LX-17) overlaps the front obtained 
from DNS with the CHEETAH model. 

Conclusion 

The new front tracker admits arbitrarily specified 
boundary geometry. Difficulties associated with a 
moving particle front tracker [7] are resolved with 
the new tracker. The particles are rearranged at 
times when their distribution becomes non-ideal. 
Particles can easily be added or removed from the 
front to maintain the quality of the front geometry.  
The issue about a particle moves out of valid 
region is addressed with an efficient inclusion test. 

Besides being fast, the new DSD front tracker has 
the advantage of being compact. At any given time, 
only the boundary geometry and the lighting front 
geometry are needed to carry the calculation. This 
tracker is of high spatial accuracy (third order) 
thus a high resolution is not required unless a local 



high front curvature needs to be resolved (existing 
DSD methods has difficulties resolving high local 
curvature).  The lighting time on a hydro mesh can 
be easily obtained with a local implementation of 
the particle data. The mesh-less tracker is validated 
by comparisons to detonation fronts generated 
with direct numerical simulation with a detailed 
reaction chemistry model (CHEETAH) for various 
DSD parameters. We conclude that this DSD 
tracker is capable to serve as an efficient, light 
weight tool for programmed burn with the 
detonation shock dynamics. 

Future Work 

With the capability to handle the high curvature 
near HE boundary, this mesh-less algorithm has 
the potential to simulate the dead-zone in corner-
turning. We will spend effort with this possibility. 
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